Московский физико-технический институт

Лаборатория теоретической нанофизики (лаборатория закрыта 31.12.2016)

Ближайшие семинары по квантовой нанофизике
colloquium, пятница 24 мая 2019 г., , 11:30

D. Christian Glattli (Nanoelectronics Group, Service de Physique de l’Etat Condensé, CEA Saclay, France)

Minimal excitations states: From time resolved single particle fermionic states for Electron Quantum Optics to Digital communication and music.

In the 90’s, an impressive series of works by theoreticians from the Landau Institute on electrons shot noise in quantum conductors [1] and on the statistics of transfer of electrons [2] has leaded to the emergence of the beautiful concept of minimal excitation states [3-5]. These minimal excitation states can be generated by applying voltage pulses on the contact of a conductor to inject short single electron pulses. These states show minimal noise and provide a convenient and clean single electron source for electron optics whose aim is to perform quantum optics tasks with electrons instead of photons. The minimal excitations states, now called levitons, have been produced in recent experiments [6] and have triggered a large number of theoretical works. They have enabled Hong Ou Mandel like experiments [6] with electrons and single electron quantum Tomography [7]. Extension to fractionally charged anyons is possible.
At the root of the minimal excitation property is a specific single side band modulation of the electron wave by the Lorentzian voltage pulse. This property can be applied to classical electromagnetic or acoustic waves for applications in digital communication [8] or in music sound synthesis.
[1] G. B. Lesovik, JETP Letters, 49 (9), 592-594 (1989).
[2] L.S. Levitov, G.B. Lesovik, Charge-transport statistics in quantum conductors, JETP Lett., 55 (9), 555-559 (1992).
[3] A. Ivanov, H.W. Lee, L.S. Levitov, Coherent states of alternating current, Phys. Rev. B 56(11), 6839-6850 (1997); cond-mat/9501040
[4] L.S. Levitov, H. Lee, G.B. Lesovik, Electron Counting Statistics and Coherent States of Electric Current, J. Math. Phys., 37(10), 4845-4866 (1996); cond-mat/9607137.
[5] J. Keeling, I. Klich, and L. S. Levitov, Minimal Excitation States of Electrons in One-Dimensional Wires, Phys. Rev. Lett. 97, 116403 (2006).
[6] Minimal-excitation states for electron quantum optics using levitons, J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin, W. Wegscheider, P. Roulleau & D. C. Glattli, Nature, 502, 659–663 (2013).
[7] Quantum tomography of an electron, T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin & D. C. Glattli, Nature, 514, 603–607 (2014).
[8] Power Spectrum Density of Single Side Band CPM Using Lorenztian Frequency Pulses, Haïfa Farès, D. Christian Glattli, Yves Louet, Jacques Palicot, Preden Roulleau, and Christophe Moy, IEEE Wireless Communications Letters, 6 (6), 786-789, (2017).

Наш адрес:

г.Долгопрудный
Московский физико-технический институт
Лабораторный корпус МФТИ, к.122

контактный адрес: nanotheory@phystech.edu (заведующий лабораторией М.В.Фейгельман, зам. зав. И.В.Загороднев)

Направления исследований
  • Мезоскопические электронные системы
  • Cверхпроводящие гибридные структуры
  • Квантовые фазовые переходы
  • Спинтроника
  • Двумерный электронный газ. Квантовый эффект Холла
  • Квантовый магнетизм и системы с "топологическим порядком"
  • Физика квантовых вычислений
Недавние семинары по квантовой нанофизике
Теоретический семинар, четверг 23 мая 2019 г., ИФП, 11:30

D. Christian Glattli (Nanoelectronics Group, Service de Physique de l’Etat Condensé, CEA Saclay, France)

A Josephson relation for e/3 and e/5 fractionally charged anyons

Anyons occur in two-dimensional electron systems as excitations with fractional charge in the topologically ordered states of the fractional quantum Hall effect (FQHE). Their dynamics are of utmost importance for topological quantum phases and possible decoherence-free quantum information approaches, but observing these dynamics experimentally is challenging. Here, we report on a dynamical property of anyons: the long-predicted [1] Josephson relation fJ = e*V/h for charges e* = e/3 and e/5, where e is the charge of the electron and h is Planck’s constant [2].

The relation manifests itself as marked signatures in the dependence of photo-assisted shot noise (PASN) [3-4] on voltage V when irradiating contacts at microwaves frequency fJ [4]. The validation of FQHE PASN models indicates a path toward realizing time-resolved anyon sources based on levitons. The method may be of interest to provide a demonstration of anyonic statistics, a pre-requisite for topological quantum computing.

[1] X. G. Wen, Edge transport properties of the fractional quantum Hall states and weak-impurity scattering of a one-dimensional charge-density wave, Phys. Rev. B 44, 5708–5719 (1991). [2] M. Kapfer, P. Roulleau, M. Santin, I. Farrer, D. A. Ritchie, and D. C. Glattli, A Josephson relation for fractionally charged anyons, Science 363, 846–849 (2019). [3] G. B. Lesovik and L. S. Levitov, Noise in an ac biased junction: Nonstationary Aharonov-Bohm effect, Phys. Rev. Lett. 72, 538–541 (1994). [4] C. de C. Chamon, D. E. Freed, and X. G. Wen, Tunneling and quantum noise in one-dimensional Luttinger liquids, Phys. Rev. B 51, 2363–2379 (1995).

Семинар сектора квантовой мезоскопики, пятница 17 мая 2019 г., ИТФ, 15:00

Антон Хвалюк

Простая модель для описания эффектов троттеризации в квантовых симуляциях

Квантовые вычисления в последнее время являются активно развивающейся областью прикладной физики и теории информации. Одним из многообещающих применений возможностей сегодняшних квантовых компьютеров являются квантовый симуляции физических систем на системах кубитов. Однако, существенными проблемами на пути к физически корректным симуляциям являются троттеровская ошибка дискретизации и различные эффекты шума. В этом докладе будет предложена простая точно решаемая модель системы спинов, позволяющая изучить основные эффекты троттеровской ошибки и дающая возможность для изучения эффектов шума.